dashboard/backend/init_dimensions.py
2025-06-09 14:59:40 +08:00

68 lines
3.4 KiB
Python

from sqlalchemy.orm import Session
from database import SessionLocal, engine, Base
import models
import crud
def init_dimensions():
# 创建会话
db = SessionLocal()
try:
# 检查是否已经存在维度数据
existing_dimensions = db.query(models.Dimension).count()
if existing_dimensions == 0:
print("初始化维度数据...")
# 教师科研人才评估维度
talent_dimensions = [
{"name": "教育和工作经历", "weight": 10, "category": "talent", "description": "教育背景和工作经历评估"},
{"name": "研究方向前沿性", "weight": 8, "category": "talent", "description": "研究是否处于学科前沿"},
{"name": "主持科研项目情况", "weight": 12, "category": "talent", "description": "项目规模、数量及影响力"},
{"name": "科研成果质量", "weight": 16, "category": "talent", "description": "论文、专利等成果的质量与影响"},
{"name": "教学能力与效果", "weight": 14, "category": "talent", "description": "教学水平及学生评价"},
{"name": "学术服务与影响力", "weight": 40, "category": "talent", "description": "学术服务与社会影响力"}
]
# 工程研究中心评估维度
lab_dimensions = [
{"name": "工程技术研发能力与水平", "weight": 30, "category": "lab", "description": "工程研究中心整体工程技术研发水平"},
{"name": "创新水平", "weight": 10, "category": "lab", "description": "工程研究中心科研创新程度"},
{"name": "人才与队伍", "weight": 10, "category": "lab", "description": "工程研究中心人才梯队建设情况"},
{"name": "装备与场地", "weight": 10, "category": "lab", "description": "工程研究中心设备和场地条件"},
{"name": "成果转化与行业贡献", "weight": 30, "category": "lab", "description": "成果产业化情况与行业贡献"},
{"name": "学科发展与人才培养", "weight": 20, "category": "lab", "description": "对学科发展与人才培养的贡献"},
{"name": "开放与运行管理", "weight": 20, "category": "lab", "description": "工程研究中心开放程度与管理水平"}
]
# 添加教师科研人才评估维度
for dim in talent_dimensions:
crud.create_dimension(
db,
name=dim["name"],
weight=dim["weight"],
category=dim["category"],
description=dim["description"]
)
# 添加工程研究中心评估维度
for dim in lab_dimensions:
crud.create_dimension(
db,
name=dim["name"],
weight=dim["weight"],
category=dim["category"],
description=dim["description"]
)
print("维度数据初始化完成!")
else:
print("数据库中已存在维度数据,跳过初始化。")
finally:
db.close()
if __name__ == "__main__":
# 确保表已创建
Base.metadata.create_all(bind=engine)
# 初始化维度数据
init_dimensions()